News Release ## **Defense Advanced Research Projects Agency** 3701 North Fairfax Drive Arlington, VA 22203-1714 IMMEDIATE RELEASE August 2, 2010 ## DARPA CREATES OPPORTUNITIES FOR RISING FACULTY STARS ## Agency Goal is to Encourage Research and Professional Growth in DoD-related Areas The prevention and creation of strategic technologic surprise requires transformational thoughts and approaches. To spark game-changing ideas and generate excitement for the unique challenges DoD encounters today and tomorrow, the Defense Advanced Research Projects Agency (DARPA) has selected 33 up-and-coming researchers at 24 U.S. universities to participate in DARPA's Young Faculty Award (YFA) program. Through its YFA program, DARPA identifies junior faculty, inculcating them on the complexity of the Defense Department, its needs and DARPA's program development process. The YFA program combines funding and mentoring, with industry and DoD networking early in awardee's careers to aid them in framing their research in the context of DoD's needs. The YFA program is one of the many things DARPA does to develop the next generation of academic scientists, engineers and mathematicians in key disciplines and encourage them to focus a significant portion of their careers on Defense and National Security issues. Dr. Viktoria Greanya, a DARPA program manager leader of this year's YFA program, said: "DARPA focuses on some of the most critical science and technology areas in which research advancements could make an important difference to the warfighter. We have an exciting group of awardees and look forward to harnessing their research efforts." The YFA awardees were chosen though a competitive selection process. Applicants were required to be untenured faculty at U.S. institutions within 5 years of appointment to a tenure track position. Selected researchers receive grants of approximately \$300,000 to develop and validate their research ideas over a period of two years. YFA recipients also participate in military base visits or exercises that provide them with first-hand perspectives of current issues faced by DoD warfighters. Annual solicitations for the Young Faculty Awards programs are published in the Fall on DARPA's website, at FedBizOpps and at Grants.gov. DARPA selects a new group of YFA researchers approximately once a year based on proposals submitted under an annual solicitation. Including this year's class of 33 researchers, 129 faculty have participated in the YFA program. Awardees will be recognized by DARPA in Arlington, VA on September 21-22 (see list of selected researchers below). Media with questions, please contact Eric Mazzacone, eric.mazzacone@darpa.mil. | Researcher | Institution | City | State | Topic Area | Title of Effort | |---------------------|--|-----------------|-------|---|---| | Andrew Houck | Princeton
University | Princeton | NJ | Quantum
Science and
Technology | Scanned Probe Cavity Quantum
Electrodynamics | | Brian D'Usro | University of Pittsburgh | Pittsburgh | PA | Quantum
Science and
Technology | Quantum Interactions of a Graphene
Nanomechanical Oscillator with a Single
Spin | | Chuanwei Zhang | Washington State
University at
Pullman | Pullman | WA | Quantum
Science and
Technology | Induced Topological Order and Quantum
Computation in Fermionic Cold Atom
Superfluids | | Martin Zwierlein | Massachusetts
Institute of
Technology | Cambridge | MA | Quantum
Science and
Technology | Strongly Interacting Fermi Gases in
Lower Dimensions | | Thomas Knotts | Brigham Young
University | Provo | UT | Applied Biology,
Biomedical
Devices and
Bioinformatics | Predicting Protein Behavior on Surfaces for Improved Design of Protein Arrays | | Emily Gibson | University of Colorado, Denver | Denver | СО | Applied Biology,
Biomedical
Devices and
Bioinformatics | Integration of Microfluidic Devices with
Nonlinear Spectroscopy for Flow
Cytometry and Bioagent Detection | | Howard Salis | Pennsylvania State
University | University Park | PA | Applied Biology,
Biomedical
Devices and
Bioinformatics | Rational Design of Nucleic Acid Drugs to
Control Metabolism and Kill Pathogens | | Andrew Blumberg | University of Texas at Austin | Austin | TX | Mathematics | Applied algebraic topology: Categorical foundations, topological statistics, and practical implementations | | Jason Morton | Pennsylvania State
University | University Park | PA | Mathematics | Kernel Counting | | Youping Chen | University of Florida | Gainesville | FL | Structural
Materials | Predicting Materials Properties from their Microstructural Architecture | | Yashashree Kulkarni | University of
Houston | Houston | TX | Structural
Materials | Computational Modeling of Grain
Stability in Nanostructured Materials | | Aaron Lindenberg | Stanford University | Stanford | CA | Functional
Materials | All-optical control of nanoelectronic devices | | Gregory Engel | University of Chicago | Chicago | IL | Functional
Materials | Coherent Energy Transfer in Novel
Excitonic Materials for High Speed Large
Area Sensors and Efficient On-Pixel
Data Processing | | Artem Oganov | Stony Brook
University | Stony Brook | NY | Functional
Materials | Novel computational methodologies for
nananoscale design of functional
materials | | Yu Huang | University of
California, Los
Angeles | Los Angeles | CA | Power and
Energy | Design of Broad Spectrum Solar Energy
Harvesting Antenna for Organic
Photovoltaics | | Yongsheng Chen | Pennsylvania State
University | University Park | PA | Power and
Energy | Catalyst Deactivation in Steam
Reforming of Liquid Hydrocarbons to
Produce Hydrogen for Fuel Cell Power
Generation | | Krishna Mandal | University of South
Carolina | Columbia | SC | Power and
Energy | Quantum Cutting Core-Shell
Nanocrystals for Enhanced Solar Cell
Efficiency | | _ | | | | | 1 | |-----------------------|---|-----------------|----|--|---| | Mona Jarrahi | University of
Michigan | Ann Arbor | MI | Advanced
Electronics | Plasmonics-Enabled Ultra-Short Carrier
Lifetime Photoconductors for High
Power Terahertz Generation | | Alyosha Molnar | Cornell University | Ithaca | NY | Advanced
Electronics | Bio-inspired optical image compression in CMOS | | N. Peter Armitage | Johns Hopkins
University | Baltimore | MD | Advanced
Electronics | Invention, Development, and Application of a Time domain THz Ellipsometer | | Xiaojing (John) Zhang | University of Texas
at Austin | Austin | TX | MEMS | Patterned Plasmonic Surfaces on MEMS | | Dana Weinstein | Massachusetts
Institute of
Technology | Cambridge | MA | NEMS | Mutli-GHz Acoustic Resonance in
Transistors | | Chuan-Hua Chen | Duke University | Durham | NC | NEMS | A Planar Thermal Diode | | Kripa Varanasi | Massachusetts
Institute of
Technology | Cambridge | MA | NEMS | Nanoengineered Surfaces for Ultra High
Heat Flux Thermal Management | | Lin Zhu | Clemson University | Clemson | SC | Photonics and Lasers | On-chip coherent combining of angled-
grating-confined broad-area
semiconductor lasers | | Ramesh Raskar | Massachusetts
Institute of
Technology | Cambridge | MA | Photonics and Lasers | Looking Around Corners using Transient
Imaging | | Ozdal Boyraz | University of California, Irvine | Irvine | CA | Photonics and Lasers | Mid-IR Photonic Integrated Circuits | | Pei-Cheng Ku | University of
Michigan | Ann Arbor | MI | Photonics and Lasers | Nitride Semiconductor Single-Photon
Emitters and Photon Entanglement | | Manuel Gamero-Castano | University of California, Irvine | Irvine | CA | Manufacturing
Science and
Technology | Nanodroplet Beam Sputtering for Very
Fast Milling and Micromachining of Inert
Materials | | John Johnson | Kent State
University | Kent | ОН | Neuroscience | Targeting Stress Resilience Without Detriment to Adaptive Stress Response | | William Tyler | Arizona State
University | Tempe | AZ | Neuroscience | The Development of Pulsed Ultrasound for Noninvasive Neural Interfaces | | James Caverlee | Texas Engineering
Experiment Station
/ Texas A&M
University System | College Station | TX | Computational
and Quantitative
Social, Decision,
and Behavioral
Sciences | Personalized Monitoring of the Real-
Time Social Web | | Abel Rodriguez | University of
California, Santa
Cruz | Santa Cruz | CA | Computational
and Quantitative
Social, Decision,
and Behavioral
Sciences | Dynamic Social Modeling: Estimation and Optimal Intervention Design |